- absolute cohomology group
- абсолютная когомологическая группа
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Group (mathematics) — This article covers basic notions. For advanced topics, see Group theory. The possible manipulations of this Rubik s Cube form a group. In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines … Wikipedia
Group theory — is a mathematical discipline, the part of abstract algebra that studies the algebraic structures known as groups. The development of group theory sprang from three main sources: number theory, theory of algebraic equations, and geometry. The… … Wikipedia
Étale cohomology — In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil… … Wikipedia
Weil–Châtelet group — In mathematics, particularly in arithmetic geometry, the Weil Châtelet group of an abelian variety A defined over a field K is the abelian group of principal homogeneous spaces for A , defined over K . It is named for André Weil, who introduced… … Wikipedia
Orthogonal group — Group theory Group theory … Wikipedia
Coxeter group — In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry … Wikipedia
Algebraic number field — In mathematics, an algebraic number field (or simply number field) F is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector… … Wikipedia
Motive (algebraic geometry) — For other uses, see Motive (disambiguation). In algebraic geometry, a motive (or sometimes motif, following French usage) denotes some essential part of an algebraic variety . To date, pure motives have been defined, while conjectural mixed… … Wikipedia
Galois module — In mathematics, a Galois module is a G module where G is the Galois group of some extension of fields. The term Galois representation is frequently used when the G module is a vector space over a field or a free module over a ring, but can also… … Wikipedia
Duality (mathematics) — In mathematics, a duality, generally speaking, translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one to one fashion, often (but not always) by means of an involution operation: if the dual… … Wikipedia
Class formation — In mathematics, a class formation is a structure used to organize the various Galois groups and modules that appear in class field theory. They were invented by Emil Artin and John Tate. Contents 1 Definitions 2 Examples of class formations 3 The … Wikipedia